Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 5555, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144559

RESUMEN

It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Asunto(s)
Relojes Biológicos , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Nodo Sinoatrial/patología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Relojes Biológicos/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Bradicardia/complicaciones , Bradicardia/patología , Carbacol/farmacología , Electrocardiografía , Femenino , Células HEK293 , Corazón/efectos de los fármacos , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Subunidades de Proteína/metabolismo , Reproducibilidad de los Resultados , Nodo Sinoatrial/fisiopatología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
2.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045576

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.


Asunto(s)
AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Convulsiones/metabolismo , Animales , Conducta Animal , Epilepsia/metabolismo , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Neuronas/metabolismo , Canales de Potasio , Tálamo/metabolismo , Transcriptoma
3.
Pain ; 158(10): 2012-2024, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28767511

RESUMEN

Several studies implicated cyclic adenosine monophosphate (cAMP) as an important second messenger for regulating nociceptor sensitization, but downstream targets of this signaling pathway which contribute to neuronal plasticity are not well understood. We used a Cre/loxP-based strategy to disable the function of either HCN2 or PKA selectively in a subset of peripheral nociceptive neurons and analyzed the nociceptive responses in both transgenic lines. A near-complete lack of sensitization was observed in both mutant strains when peripheral inflammation was induced by an intradermal injection of 8br-cAMP. The lack of HCN2 as well as the inhibition of PKA eliminated the cAMP-mediated increase of calcium transients in dorsal root ganglion neurons. Facilitation of Ih via cAMP, a hallmark of the Ih current, was abolished in neurons without PKA activity. Collectively, these results show a significant contribution of both genes to inflammatory pain and suggest that PKA-dependent activation of HCN2 underlies cAMP-triggered neuronal sensitization.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/metabolismo , Células Receptoras Sensoriales/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Ganglios Espinales/citología , Hiperalgesia/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Umbral del Dolor , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Canales de Potasio/genética , Proteínas/genética , Proteínas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal
4.
J Biol Chem ; 288(11): 7580-7589, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23382386

RESUMEN

Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1-4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Regulación de la Expresión Génica , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Regulación hacia Arriba , Animales , Biofisica/métodos , Encéfalo/embriología , Encéfalo/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Electrofisiología/métodos , Vectores Genéticos , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Hipotálamo/metabolismo , Ratones , Microscopía Fluorescente/métodos , Técnicas de Placa-Clamp , Filogenia , Canales de Potasio/química , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
5.
J Biol Chem ; 287(43): 36312-21, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22936811

RESUMEN

Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca(2+)-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Secuencias de Aminoácidos , Animales , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Proteínas de Unión al Calcio/genética , Células HEK293 , Humanos , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Ceguera Nocturna/mortalidad , Estructura Terciaria de Proteína , Retina/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
6.
J Biol Chem ; 287(32): 26506-12, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22715094

RESUMEN

Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC(50) value of ∼30 µm for cCMP compared with 1 µm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ∼0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes.


Asunto(s)
CMP Cíclico/fisiología , Activación del Canal Iónico/fisiología , Animales , Línea Celular , Femenino , Ratones , Técnicas de Placa-Clamp
7.
Pflugers Arch ; 458(5): 891-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19557428

RESUMEN

Second messenger-induced Ca(2+)-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP(3)), Ca(2+), and cyclic ADP ribose (cADPR) that trigger Ca(2+)-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca(2+)-release from lysosomal stores. While NAADP-induced Ca(2+)-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca(2+)-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca(2+)-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca(2+)-release is almost completely abolished when the capacity of lysosomes for storing Ca(2+) is pharmacologically blocked. By contrast, TPCN2-specific Ca(2+)-release is unaffected by emptying ER-based Ca(2+) stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca(2+)-release channel.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Lisosomas/metabolismo , NADP/análogos & derivados , Secuencia de Aminoácidos , Estructuras Animales/metabolismo , Animales , Células COS , Señalización del Calcio/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Glicosilación , Humanos , Activación del Canal Iónico/fisiología , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , NADP/metabolismo , NADP/farmacología , Homología de Secuencia de Aminoácido , Tapsigargina/farmacología , Transfección , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA